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Abstract

This paper deals with the influence of heat transfer on the flow of a fourth grade fluid past a porous plate. The heat transfer analysis has been
carried out for the prescribed temperature. The series solution is first developed using homotopy analysis method (HAM) and then analyzed for
its convergence. The obtained velocity profile is compared with the existing exact solution of the same flow problem for a second grade fluid. It is
found that HAM results are in excellent agreement with the exact solution. Finally, the velocity and temperature profiles are plotted and discussed.
It is noted from the solution series that the results in the case of injection does not exist.
© 2007 Elsevier Masson SAS. All rights reserved.
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1. Introduction

Heat transfer from the wall is very important in industries
processing molten plastics, polymers, food stuff or slurries. The
need to understand such mechanism has led to a large number
of experimental and theoretical studies. Considerable attention
has been directed towards the analysis and understanding of
such problems characterized by highly non-linear differential
equations. Much efforts have been made for the Newtonian
fluids. But non-Newtonian fluids having extensive applications
in industry and technology have not been given proper atten-
tion. The dearth of studies for non-Newtonian flows with heat
transfer, we believe, due partly to the inherently complex flow
geometry combined with the difficulty to represent accurately
the rheological behavior of non-Newtonian materials. Such
flows with heat transfer have several applications in the envi-
ronmental and industrial problems such as drying processes,
heat pipe technologies, aquifers overlying salt formations or
geothermal reservoirs and many others in geophysical fluid dy-
namics.

In view of the above motivation, the aim of the current article
is to analyze the effect of heat transfer on the flow of a non-
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Newtonian fluid. The non-Newtonian fluid obeys the fourth or-
der fluid model. The governing equations are considered for the
flow past a porous plate. The plate and main free stream have
different temperatures. Such analysis of heat transfer analysis
in boundary layer flows is of great importance in many engi-
neering applications. Such applications include the design of
thrust bearings and radial diffusers, transpiration cooling, drag
reduction, thermal recovery of oil etc.

The present article is organized as follows. In the next sec-
tion, the equations describing the flow and heat transfer are
presented. The third section includes the analytical solutions for
the velocity and temperature using a powerful, recently devel-
oped technique namely the homotopy analysis method (HAM)
by Liao [1,2]. This technique has already been used for the so-
lution of various problems [3–26]. Recently, Sajid et al. [27]
studied the flow of a fourth grade fluid past a porous plate.
In this study the heat transfer is not considered. Here the heat
transfer analysis is considered for the same problem. However,
a better choice of the auxiliary linear operator for the velocity
is made. It is noted that now an excellent agreement is achieved
for the existing results of velocity in a second grade fluid [28].
The fourth section describes the convergence of the HAM solu-
tions. Fifth section includes the results and discussion. The last
section consists of concluding remarks.
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2. Statement of the problem

This paper is in continuation to our earlier work [27]. Here
the steady flow and heat transfer analysis of a fourth grade fluid
past a porous plate is considered. The x-axis is parallel to the
plate and the y-axis is normal to it and the velocity field to
depend only on y. The equations which govern the flow and
heat transfer analysis are the incompressibility condition

div V = 0 (1)

the momentum equation

dV
dt

= 1

ρ
div T (2)

and the energy equation

ρcp

dθ

dt
= k∇2θ + T · L (3)

where ρ is the fluid density, cp is the specific heat, k is the
thermal conductivity, T is the velocity, θ is the temperature and
T is the Cauchy stress tensor. For the fourth grade fluid we have

T = −pI + μA1 + α1A2 + α2A2
1 + S1 + S2 (4)

S1 = β1A3 + β2(A2A1 + A1A2) + β3(tr A2
1)A1 (5)

S2 = γ1A4 + γ2(A3A1 + A1A3) + γ3A2
2

+ γ4
(
A2A2

1 + A2
1A2

)+ γ5(tr A2)A2

+ γ6(tr A2)A2
1 + (

γ7 tr A3 + γ8 tr(A2A1)
)
A1 (6)

where p is the hydrostatic pressure, I is the identity tensor, μ

is the coefficient of viscosity and αi (i = 1,2), βi (i = 1−3)

and γi (i = 1−8) are the material constants. It should be noted
that for Navier–Stokes fluid, αi (i = 1,2) = βi (i = 1−3) =
γi (i = 1−8) = 0. When αi (i = 1,2) �= 0 and βi (i = 1−3) =
γi (i = 1−8) = 0 then we get the second order fluid model.
Furthermore, when αi (i = 1,2) �= 0 and βi (i = 1−3) �= 0,
γi (i = 1−8) = 0, one obtains the third order fluid model. The
kinematical tensors A1 to A4 are the Rivlin–Ericksen tensors
given by

A1 = L + L� (7)

An = dAn−1

dt
+ An−1L + L�An−1 (n > 1) (8)

L = ∇V (9)

Under the consideration of flow, it follows from Eq. (1) that for
uniformly porous plate

v = −V0 (10)

where V0 > 0 is the suction velocity and V0 < 0 corresponds to
the injection velocity.

Since the velocity and temperature depends only on y, there-
fore Eqs. (2) and (3) takes the form

−ρV0
du

dy
= d

dy
Txy (11)

−ρcpV0
dθ = k

d2θ

2
+ Txy

du
(12)
dy dy dy
u(y) is the x-component of velocity and the shear stress Txy is
[27]

Txy = μ
du

dy
− α1V0

d2u

dy2
+ β1V

2
0

d3u

dy3

+ 2(β2 + β3)

(
du

dy

)3

− γ1V
3
0

d4u

dy4

− (6γ2 + 2γ3 + 2γ4 + 2γ5 + 6γ7 + 2γ8)V0

(
du

dy

)2 d2u

dy2

(13)

The boundary conditions for the problem under consideration
are

u(0) = 0, and

u(y) → U0,
dnu

dyn
→ 0 as y → ∞ for n = 1,2,3

θ(0) = θ0, and θ(y) → θ∞ as y → ∞ (14)

where U0 is the constant velocity of the free stream, θ0 is the
wall temperature and θ∞ is the temperature of the free stream.
Defining

u = u

U0
, θ = θ − θ∞

θ0 − θ∞
, y = U0y

v

V 0 = V0

U0
, α1 = α1U

2
0

ρv2
, β1 = β1U

4
0

ρv3

γ 1 = γ1U
6
0

ρv4
, β = 6(β2 + β3)U

4
0

ρv3

γ = 2(3γ2 + γ3 + γ4 + γ5 + 3γ7 + γ8)
U6

0

ρv4

Eqs. (11) and (12) and boundary conditions (14) simplify to

d2u

dy2
+ V0

du

dy
− α1V0

d3u

dy3
+ β1V

2
0

d4u

dy4

−γ1V
3
0

d5u

dy5
+ β

(
du

dy

)2 d2u

dy2

−γV0

{
2

du

dy

(
d2u

dy2

)2

+
(

du

dy

)2 d3u

dy3

}
= 0 (15)

d2θ

dy2
+ Pr

[
V0

dθ

∂y

+Ec

{ ( du
∂y

)2 − α1V0
d2u

∂y2
du
∂y

+ β1V
2
0

d3u

dy3
du
dy

+β
( du

dy

)4 − γV0
( du

dy

)3 d2u

dy2 − γ1V
3
0

d4u

dy4
du
dy

}]
= 0 (16)

u(0) = 0, and

u → 1,
dnu

dyn
→ 0 as y → ∞ for n = 1,2,3

θ(0) = 1, and θ → 0, as y → ∞ (17)

where Pr = μcp/k, E = U2
0 /cp(θ0 − θ∞) are respectively the

Prandtl and Eckert numbers and bars have been suppressed
throughout.
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3. HAM-solutions for velocity and temperature

3.1. Zeroth-order deformation problems

The velocity and temperature distributions f (η) and θ(η)

can be expressed by the set of base functions of the form{
yk exp(−nV0y) | k � 0, n � 0

}
(18)

in the form of the following series

f (y) = a0
0,0 +

∞∑
n=0

∞∑
k=0

ak
m,ny

k exp(−nV0η)

θ(η) =
∞∑

n=0

∞∑
k=0

bk
m,ny

k exp(−nV0y) (19)

in which ak
m,n and bk

m,n are the coefficients. Upon making use
of the so-called Rule of solution expressions for f (η) and θ(η)

and Eqs. (15)–(17), the initial guesses f0(η), θ0(η) and linear
operators L1 and L2 are

u0(y) = 1 − e−V0y, θ0(y) = e−V0y (20)

L1(u) = u′′ + V0u
′, L2(θ) = θ ′′ − V 2

0 θ (21)

which satisfy

L1
[
C1 + C2e−V0y

]= 0, L2
[
C3e−V0y + C4eV0y

]= 0 (22)

where Ci : i = 1,2,3,4 are arbitrary constants. Eqs. (15) and
(16) show that the non-linear operators are

N1
[
u(y,p)

]= ∂2u(y,p)

∂y2
+ V0

∂u(y,p)

∂y
− α1V0

∂3u(y,p)

∂y3

+ β1V
2
0

∂4u(y,p)

∂y4
− γ1V

3
0

∂5u(y,p)

∂y4

+ β

(
∂u(y,p)

∂y

)2
∂2u(y,p)

∂y2

− γV0

[ ( ∂u(y,p)
∂y

)2 ∂3u(y,p)

∂y3

+2 ∂u(y,p)
∂y

( ∂2u(y,p)

∂y2

)2
]

(23)

N2
[
u(y,p), θ(y,p)

]= ∂2θ(y,p)

∂y2

+Pr

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

V0
∂θ(y,p)

∂y

+E
∂u(y,p)

∂y

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u(y,p)
∂y

− α1V0
∂2u(y,p)

∂y2

+β1V
2
0

∂3u(y,p)

∂y3

−γ1V
3
0

∂u4(y,p)

∂y4

+β
( ∂u(y,p)

∂y

)3
−γV0

( ∂u(y,p)
∂y

)2 ∂2u(y,p)

∂y2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(24)

Denoting h̄ and h̄1 as a non-zero auxiliary parameters, the ze-
roth order deformation problems are:

(1 − p)L1
[
u(y,p) − u0(y)

]= ph̄N1
[
u(y,p)

]
(25)

(1 − p)L2
[
θ(y,p) − θ0(y)

]= ph̄1N2
[
u(y,p), θ(y,p)

]
(26)

u(0,p) = u′(∞,p) = u′′(∞,p) = u′′′(∞,p) = 0,

u(∞,p) = 1, θ(0,p) = 1, θ(∞,p) = 0 (27)
in which p ∈ [0,1] is the embedding parameter. When p = 0
and p = 1, we respectively have

u(y,0) = u0(y), u(y,1) = u(y)

θ(y,0) = θ0(y), θ(y,1) = θ(y) (28)

As p increases from 0 to 1, u(y,p), θ(y,p) varies u0(y), θ0(y)

to the exact solutions u(y), θ(y). By Taylor’s theorem and
Eq. (28) we can write

u(y,p) = u0(y) +
∞∑

m=1

um(y)pm

θ(y,p) = θ0(y) +
∞∑

m=1

θm(y)pm (29)

where

um(y) = 1

m!
∂mu(y,p)

∂pm

∣∣∣∣
p=0

θm(y) = 1

m!
∂mθ(y,p)

∂pm

∣∣∣∣
p=0

(30)

It is important to mention here that the two series given in
Eq. (17) involve the auxiliary parameters h̄ and h̄1 which de-
termine the convergence of the series solutions. Assume that h̄

and h̄1 are chosen in such a way that the series (17) are conver-
gent at p = 1. Then due to Eq. (16) we have

u(y) = u0(y) +
∞∑

m=1

um(y)

θ(y) = θ0(y) +
∞∑

m=1

θm(y) (31)

3.2. mth-order deformation problems

Differentiating m times the zeroth order deformation equa-
tions (25) and (26) with respect to p, dividing by m! and finally
setting p = 0, the mth-order deformation problems are

L1
[
um(y) − χmum−1(y)

]= h̄R1
m(y) (32)

L2
[
θm(y) − χmθm−1(y)

]= h̄1R2
m(y) (33)

um(0) = um(∞) = u′
m(∞) = u′′

m(∞) = u′′′
m(∞)

= θm(0) = θm(∞) = 0 (34)

R1
m(y) = u′′

m−1(y) + V0u
′
m−1(y) − α1V0u

′′′
m−1(y)

+ β1V
2
0 uiv

m−1(y) − γ1V
3
0 uv

m−1(y)

+
m−1∑
k=0

u′
m−1−k(y)

k∑
l=0

[
βu′

k−l (y)u′′
l (y)

− γV0
{
u′

k−l(y)u′′′
l (y) + 2u′′

k−l(y)u′′
l (y)

}]
(35)

R2
m(y) = θ ′′

m−1(y)

+Pr

⎡
⎣ V0θ

′
m−1(y) + E

∑m−1
k=0 u′

m−1−k(y)
{ u′

k (y)−α1V0u′′
k (y)

+β1V 2
0 u′′′

k (y)−γ1V 3
0 θ iv

k (y)

}
+E

∑m−1
k=0 u′

m−1−k(y)
∑k

l=0 u′
k−l (y)

∑l
r=0

[ βu′
l−r (y)u′

r (y)

−γV0u′
l−r (y)u′′

r (y)

]
⎤
⎦
(36)
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where

χm =
{

0, m � 1
1, m > 1

(37)

The system of non-linear equations (32)–(34) are solved up to
first few order of approximations with the help of symbolic
computation software MATHEMATICA. It is found that the so-
lutions u(y) and θ(y) are of the following form

u(y) =
∞∑

m=0

um(y)

= lim
M→∞

[
a0

0,0 +
2M+1∑
n=1

e−nV0y

(
2M∑

m=n−1

2m+1−n∑
k=0

ak
m,ny

k

)]

(38)

θ(y) =
∞∑

m=0

θm(y)

= lim
M→∞

[
2M+2∑
n=1

e−nV0y

(
2M+1∑
m=n−1

2m+2−n∑
k=0

âk
m,ny

k

)]
(39)

where

ak
m,0 = χmχ2m+1−ka

k
m−1,0, 0 � k � 2m + 1 (40)

a0
m,1 = χmχ2ma0

m−1,1 −
2m+1∑
n=2

2m+1−n∑
q=0

Γ
q
m,nμ

q

n,0 (41)

ak
m,1 = χmχ2m−ka

k
m−1,1 −

2m∑
q=k−1

Γ
q

m,1μ
q

1,k, 1 � k � 2m (42)

ak
m,n = χmχ2m+1−n−ka

k
m−1,n −

2m+1−n∑
q=k

Γ
q
m,nμ

q
n,k

2 � n � 2m + 1, 0 � k � 2m + 1 − n (43)

âk
m,0 = χmχ2m+2−kâ

k
m−1,0, 0 � k � 2m + 2 (44)

â0
m,1 = χmχ2m+1â

0
m−1,1 −

2m+2∑
n=2

2m+2−n∑
q=0

Γ̂
q
m,nμ̂

q

n,0 + Γ̂
q

m,0
1

V 2
0

(45)

âk
m,1 = χmχ2m+1−kâ

k
m−1,1 −

2m+1∑
q=k−1

Γ̂
q

m,1μ̂
q

1,k

1 � k � 2m + 1 (46)

âk
m,n = χmχ2m+2−n−kâ

k
m−1,n −

2m+2−n∑
q=k

Γ̂
q
m,nμ̂

q
n,k

2 � n � 2m + 2, 0 � k � 2m + 2 − n (47)

μ
q

1,k = q!
k!V q−k+2

0

, 0 � k � q + 1, q � 0 (48)

μ
q
n,k =

q−k∑
p=0

q!
k!V q−k+2

0 (n − 1)q−k−p+1(n)p+1

0 � k � q, q � 0, n � 2 (49)
μ̂
q

1,k = q!
k!(2V0)q−k+2

, 0 � k � q + 1, q � 0 (50)

μ̂
q
n,k =

q−k∑
p=0

q!
k!V q−k+2

0 (n − 1)q−k−p+1(n + 1)p+1

0 � k � q, q � 0, n � 2 (51)

Γ
q
m,n = h̄

[
χ2m+1−n−q

{
c
q
m−1,n+V0b

q
m−1,n−α1V0d

q
m−1,n

+β1V
2
0 e

q
m−1,n−γ1V

3
0 f

q
m−1,n

}
+βδ

q
m,n − γV0Δ

q
m,n − 2γV0Λ

q
m,n

]
(52)

Γ̂
q
m,n = h̄

⎡
⎢⎢⎢⎣χ2m+2−n−q

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ĉ
q
m−1.n

+Pr

⎧⎨
⎩

V0b̂
q
m−1,n

+E

{
δ
q
m,n−α1V0Δ

q
m,n

+β1V 2
0 Λ

q
m,n−α1V 3

0 Ω
q
m,n

}⎫⎬⎭

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

−PrEc{γV0ω
q
m,n − βΠ

q
m,n}

⎤
⎥⎥⎥⎦
(53)

δ
q
m,n =

m−1∑
k=0

k∑
l=0

min{n,2k+2}∑
p=max{0,n−2m+2k+1}

min{q,2k+2−p}∑
t=max{0,q−2m+2k+1+n−p}

min{p,2l+1}∑
j=max{0,p−2k+2l−1}

min{t,2l+1−j}∑
i=max{0,t−2k+2l−1+p−j}

ci
k,j b

t−i
k−l,p−j b

q−t

m−1−k,n−p (54)

Δ
q
m,n =

m−1∑
k=0

k∑
l=0

min{n,2k+2}∑
p=max{0,n−2m+2k+1}

min{q,2k+2−p}∑
t=max{0,q−2m+2k+1+n−p}

min{p,2l+1}∑
j=max{0,p−2k+2l−1}

min{t,2l+1−j}∑
i=max{0,t−2k+2l−1+p−j}

di
l,j b

t−i
k−l,p−j b

q−t

m−1−k,n−p (55)

Λ
q
m,n =

m−1∑
k=0

k∑
l=0

min{n,2k+2}∑
p=max{0,n−2m+2k+1}

min{q,2k+2−p}∑
t=max{0,q−2m+2k+1+n−p}

min{p,2l+1}∑
j=max{0,p−2k+2l−1}

min{t,2l+1−j}∑
i=max{0,t−2k+2l−1+p−j}

ci
l,j c

t−i
k−l,p−j b

q−t

m−1−k,n−p (56)

δ̂
q
m,n =

m−1∑
k=0

min{n,2k+1}∑
j=max{0,n−2m+2k+1}

min{q,2k+1−j}∑
i=max{0,q−2m+2k+1+n−j}

b
q−i
m−l−k,n−j b

i
k,j (57)

Δ̂
q
m,n =

m−1∑
k=0

min{n,2k+1}∑
j=max{0,n−2m+2k+1}

min{q,2k+1−j}∑
ci
k,j b

q−i

m−1−k,n−j (58)

i=max{0,q−2m+2k+1+n−j}
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Λ̂
q
m,n =

m−1∑
k=0

min{n,2k+1}∑
j=max{0,n−2m+2k+1}

min{q,2k+1−j}∑
i=max{0,q−2m+2k+1+n−j}

di
k,j b

q−i

m−1−k,n−j (59)

Ω
q
m,n =

m−1∑
k=0

min{n,2k+1}∑
j=max{0,n−2m+2k+1}

min{q,2k+1−j}∑
i=max{0,q−2m+2k+1+n−j}

ei
k,j b

q−i

m−1−k,n−j (60)

ω
q
m,n =

m−1∑
k=0

k∑
l=0

l∑
r=0

min{n,2k+3}∑
p1=max{0,n−2m+2k+1}

min{q,2k+3−p1}∑
t1=max{0,q−2m+2k+1+n−p1}

min{p1,2l+2}∑
p=max{0,p1−2k+2l−1}

min{t1,2l+2−p}∑
t=max{0,t1,−2k+2l−1+p1−p}

min={p,2r+1}∑
j=max{0,p−2l+2r−1}

min{t,2l+2−p}∑
i=max{0,t−2l+2r+1+p−j}

ci
r,q−j b

t−i
l−r,p−j b

t1−t
k−l,p1−p

× b
q−t1
m−1−k,n−p1

(61)

Π
q
m,n =

m−1∑
k=0

k∑
l=0

l∑
r=0

min{n,2k+3}∑
p1=max{0,n−2m+2k+1}

min{q,2k+3−p1}∑
t1=max{0,q−2m+2k+1+n−p1}

min{p1,2l+2}∑
p=max{0,p1−2k+2l−1}

min{t1,2l+2−p}∑
t=max{0,t1,−2k+2l−1+p1−p}

min={p,2r+1}∑
j=max{0,p−2l+2r−1}

min{t,2l+2−p}∑
i=max{0,t−2l+2r+1+p−j}

bi
r,j b

t−i
l−r,p−j b

t1−t
k−l,p1−p

× b
q−t1
m−1−k,n−p1

(62)

bk
m,n = (k + 1)ak+1

m,n − nV0a
k
m,n

ck
m,n = (k + 1)bk+1

m,n − nV0b
k
m,n (63)

dk
m,n = (k + 1)ck+1

m,n − nV0c
k
m,n

ek
m,n = (k + 1)dk+1

m,n − nV0d
k
m,n (64)

f k
m,n = (k + 1)dk+1

m,n − nV0e
k
m,n

b̂k
m,n = (k + 1)âk+1

m,n − nV0â
k
m,n (65)

ĉk
m,n = (k + 1)b̂k+1

m,n − nV0b̂
k
m,n

a0
0,0 = 1, a0

0,1 = −1, â0
0,1 = 1 (66)

The detail procedure of deriving the above recurrence relations
is given in Ref. [4].
4. Convergence of the HAM solutions

The series in Eqs. (38) and (39) are the solutions for the ve-
locity u and temperature θ if one guarantees the convergence
of these series. As pointed out by Liao [2] the convergence and
rate of approximation series strongly depends upon h̄ and h̄1.
The detail discussion on the role of the auxiliary parameters
on the convergence region can be seen in Ref. [2] (pp. 31–33).
Also a convergence theorem similar to one in Ref. [2] (pp. 18,
19) can be proved. In order to see the admissible range of the
values of these auxiliary parameters, the h̄-curves are drawn.
In Fig. 1 the h̄-curve for the velocity u is presented and it can
be easily observed that the valid range for the values of h̄ is
−1.5 < h̄ < −0.5. Figs. 2–4 describe the influence of differ-
ent physical parameters on the h̄-curves. Fig. 2 demonstrates
that by increasing the second grade parameter the interval of
h̄ shrinks towards −0.8. The similar behaviors are observed
for the parameters β and V0 (Figs. 3 and 4) but the variation
in h̄-curve is rapid for V0 as compared to other parameters. It
is worth pointing that even though the interval of the admissi-
ble values of h̄ varies with the variation of parameters of the
problem one can find a suitable choice of h̄ that makes the so-
lution series convergent. There is no change in the h̄-curve for
the variation of remaining material parameters like β1, γ and
γ1. Fig. 4 shows that the valid range for the values of h̄1 is
−2.0 < h̄1 < −0.5. To further strengthen the argument that the
series solutions (26) and (27) are convergent we made a com-
parison between HAM solution and existing exact solution in

Fig. 1. h̄-curve for the 10th order of approximation of u.

Fig. 2. Variation in h̄-curve with increase in α1.
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Fig. 3. Variation in h̄-curve with increase in β . Fig. 4. Variation in h̄-curve with increase in V0.

Fig. 5. h̄-curve for the 10th order of approximation of θ . Fig. 6. Comparison between exact solution [28] and HAM solution.
the case of a second grade fluid [28]. Fig. 6 shows that the
results of HAM are in excellent agreement with the exact so-
lution [28].

5. Results and discussion

This section deals with the influence of the fluid parameters
α1, β , β1, γ , γ1 and the suction velocity V0 on the velocity
and temperature profiles. The effects of Prandtl number Pr and
Eckert number E on the temperature profile is also included in
this section. For this purpose, the Figs. 7–13 have been plotted.

Figs. 7 show that the velocity increases by an increase in the
suction velocity V0. The boundary layer thickness on the other
hand decreases when suction velocity V0 is increased. But suc-
tion velocity V0 causes a decrease in both the temperature and
thermal boundary layer thickness. Hence it is concluded that
the suction on the plate can be used for controlling the bound-
ary layer thickness. In fact for boundary layer control, there has
been considerable interest in flows with suction or injection. It
is apparent from physical consideration that suction and injec-
tion produce opposite effects on the boundary layer flows. It is
already seen that when the suction velocity is strong enough
the suction causes thickening of the boundary layer. Due to this
reason by increasing the suction velocity boundary layer thick-
ness decreases. But no steady asymptotic solution is possible
for steady flow past a porous plate subjected to uniform in-
jection. This is because of the fact that the injection causes a
thickening of the boundary layer so that at a sufficiently large
distance from the leading edge the boundary layer becomes so
thick that it becomes turbulent and thus steady solution is not
possible. It can be further seen from Figs. 8–12 that the effects
of the material parameters of the fluid α1, β , β1, γ and γ1 on
the velocity and temperature profiles are quite opposite to that
of suction velocity V0, i.e. the velocity and temperature profiles
decreases by increasing α1, β , β1, γ and γ1. Moreover the ve-
locity and thermal boundary layer thickness increases when α1,
β , β1, γ and γ1 are increased.

In order to describe the effects of Prandtl and Eckert num-
bers on the temperature Figs. 13 have been prepared. These fig-
ures elucidate that the temperature and thermal boundary layer
thickness decreases by increasing the Prandtl number when
Eckert number is fixed and behave in an opposite manner when
we vary Eckert number keeping Prandtl number fixed. This is
in accordance with the fact that effects of Prandtl and Eckert
numbers are different.

6. Concluding remarks

Flow and heat transfer analysis of a fourth grade fluid over a
porous plate is considered. The highly non-linear problems are
analytically solved using homotopy analysis method. The con-
vergence of the developed series solution is established and the
recurrence formulas for finding the coefficients of the series are
given. The effects of various parameters of interest on the ve-
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Fig. 7. Influence of suction parameter V0 on velocity and temperature profiles.

Fig. 8. Influence of material parameter α1 on velocity and temperature profiles.

Fig. 9. Influence of material parameter β1 on velocity and temperature profiles.

Fig. 10. Influence of material parameter β on velocity and temperature profiles.
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Fig. 11. Influence of material parameter γ1 on velocity and temperature profiles.

Fig. 12. Influence of material parameter γ on velocity and temperature profiles.

Fig. 13. Influence of Prandtl and Eckert numbers on temperature profile.
locity and temperature profiles are plotted and discussed. The
comparison of the HAM results with the existing results in the
literature is also presented. As expected it is found that the so-
lution exists only for the suction case and is not possible for
injection.
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